Max Phase Materials in High-Performance Ceramic Applications

MAX materials and MXene materials are new two-dimensional materials who have attracted much attention lately, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in many fields. This is a comprehensive introduction to the properties, applications, and development trends of MAX and MXene materials.

What is MAX material?

MAX phase material is really a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements in the periodic table, collectively known as “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the primary group elements, including aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is composed of M, A, X, the 3 aspects of the alternating composition arrangement, with hexagonal lattice structure. Due to their electrical conductivity of metal and strength, high-temperature resistance and corrosion resistance of structural ceramics, they may be widely used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding along with other fields.

Properties of MAX material

MAX material is a new type of layered carbon nitride inorganic non-metallic material with all the conductive and thermal conductive qualities of metal, comprising three elements with the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers back to the transition metal, A refers back to the main-group elements, and X refers back to the elements of C or N. The MXene material is really a graphene-like structure obtained by the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX Phases and MXenes are novel two-dimensional nanomaterials made from carbon, nitrogen, oxygen, and halogens.

Uses of MAX materials

(1) Structural materials: the superb physical properties of MAX materials make sure they are have a wide range of applications in structural materials. For instance, Ti3SiC2 is a kind of MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.

(2) Functional materials: Besides structural materials, MAX materials can also be used in functional materials. For example, some MAX materials have good electromagnetic shielding properties and conductivity and could be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials also provide better photocatalytic properties, and electrochemical properties can be used in photocatalytic and electrochemical reactions.

(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be found in energy materials. As an example, K4(MP4)(P4) is one in the MAX materials with higher ionic conductivity and electrochemical activity, which bring a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.

What are MXene materials?

MXene materials certainly are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, similar to the structure of graphene. The top of MXene materials can communicate with more functional atoms and molecules, and a high specific surface, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation strategies for MXene materials usually range from the etching management of the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties like electrical conductivity, magnetism and optics may be realized.

Properties of MXene materials

MXene materials certainly are a new type of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, like high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., as well as good chemical stability and the cabability to maintain high strength and stability at high temperatures.

Uses of MXene materials

(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and are commonly used in energy storage and conversion. For instance, MXene materials can be used as electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials may also be used as catalysts in fuel cells to enhance the action and stability of the catalyst.

(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity may be used in electromagnetic protection. For example, MXene materials can be used as electromagnetic shielding coatings, electromagnetic shielding cloth, as well as other applications in electronic products and personal protection, boosting the effectiveness and stability of electromagnetic protection.

(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and may be used in sensing and detection. As an example, MXene materials can be used gas sensors in environmental monitoring, which could realize high sensitivity and high selectivity detection of gases. Additionally, MXene materials can also be used as biosensors in medical diagnostics as well as other fields.

Development trend of MAX and MXene Materials

As new 2D materials, MAX and MXene materials have excellent performance and application prospects. In the future, using the continuous progress of science and technology and also the increasing demand for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials will be further expanded and improved. These aspects may become the main objective of future research and development direction:

Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. In the future, new preparation technologies and techniques can be further explored to comprehend a more efficient, energy-saving and eco-friendly preparation process.

Optimization of performance: The performance of MAX and MXene materials is already high, there is however still room for further optimization. In the future, the composition, structure, surface treatment and other aspects of the material could be studied and improved comprehensive to improve the material’s performance and stability.

Application areas: MAX materials and MXene materials have been commonly used in lots of fields, but you can still find many potential application areas to get explored. In the future, they may be further expanded, including in artificial intelligence, biomedicine, environmental protection as well as other fields.

To conclude, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show an extensive application prospect in lots of fields. With all the continuous progress of science and technology and the continuous improvement of application demand, the preparation technology, performance optimization and application areas of MAX and MXene materials will likely be further expanded and improved.

MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.

This entry was posted in Technology. Bookmark the permalink.